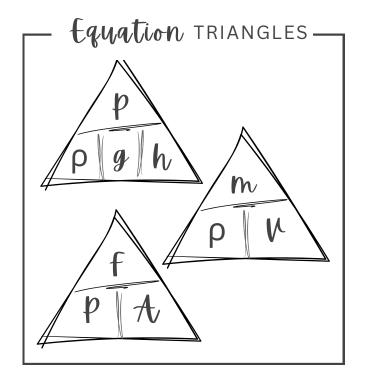


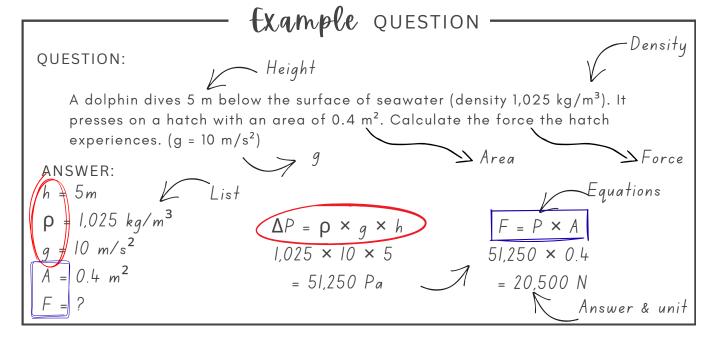
Combining equations

USEFUL Equations

PRESSURE DIFFERENCE = DENSITY x g x HEIGHT

DENSITY = MASS / VOLUME


PRESSURE = FORE / AREA


understand

UNDERSTAND, DON'T MEMORISE

These questions involve two equations. You'll need to identify which are involved to answer the question.

Make a list of variables you have on the left of the answer space, so you can figure out which equations you need.

Challenge QUESTIONS-

1. A diver is 15 m below the surtace of seawater (ρ = 1,025 kg/m²). If the diver presses on a hatch with area 0.5 m², calculate the force on the hatch. (g = 10 m/s²)

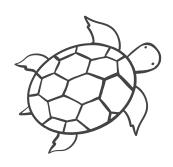
2. A magical pond has a liquid column 2.5 m deep with a pressure difference of 32,500 Pa. Calculate the density of the liquid. $(g = 10 \text{ m/s}^2)$

3. A treasure chest lies 10 m below the surface of freshwater (ρ = 1,000 kg/m³). The chest's bottom has an area of 1.2 m². Calculate the force exerted by the water on the bottom. (g = 10 m/s²)

4. A liquid column in a flask is 0.8 m high. The pressure difference between top and bottom is 9,600 Pa. Calculate the density of the liquid. $(g = 10 \text{ m/s}^2)$

5. A submarine experiences a pressure difference of 340,000 Pa in seawater (density $1,020 \text{ kg/m}^3$). Calculate the depth of the submarine. (g = 10 m/s^2)

Challenge QUESTIONS.

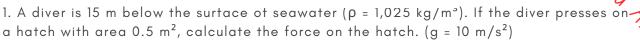

6. A giant turtle stands 6 m below the surface of a lake (ρ = 1,030 kg/m³). Its shell presses on a platform of area 1.5 m². Calculate the force on the platform. (g = 10 m/s²)

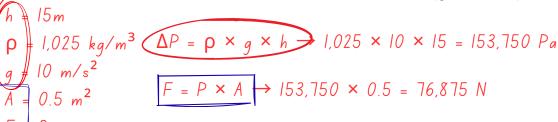
7. A crystal tower is submerged in a liquid with density 1,150 kg/m 3 . If the pressure difference between top and bottom is 46,000 Pa, calculate the height of the tower. (g = 10 m/s 2)

8. A potion flask contains a liquid 1.5 m deep with density 1,200 kg/m 3 . If the base area is 0.2 m 2 , calculate the force the liquid exerts on the base. (g = 10 m/s 2)

9. A diver measures a pressure difference of 50,000 Pa at a certain depth in seawater (ρ = 1,025 kg/m³). Calculate how deep the diver is. (g = 10 m/s²)

10. A magical well contains a shimmering fluid. A crystal bottle with a volume of 0.05 $\rm m^3$ is lowered to a depth of 25 m, where the fluid pressure is 12,500 Pa (ignore surface pressure). Find the mass of the fluid that would fill the bottle at this depth (g = 10 $\rm m/s^2$)

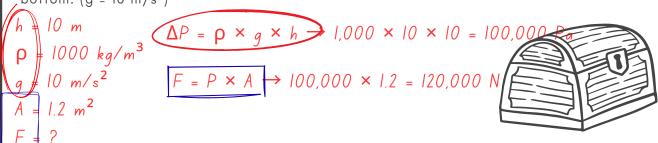




Working SPACE ————
VO-010POVING ST 710L

Combining Equations - P. P. O

- Challenge QUESTIONS —



2. A magical pond has a liquid column 2.5 m deep with a pressure difference of 32,500 Pa. Calculate the density of the liquid. $(g = 10 \text{ m/s}^2)$

$$\begin{array}{l} h = 2.5 \, \text{m} \\ P = 32,500 \, Pa \\ \rho = ? \\ g = 10 \, \text{m/s}^2 \end{array}$$

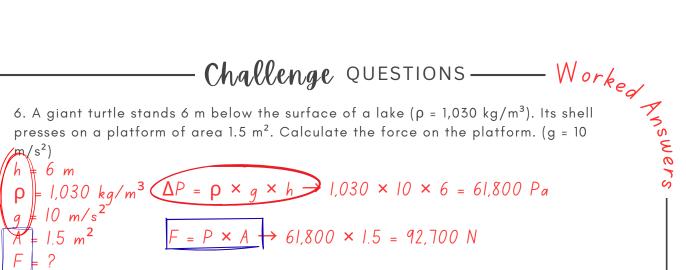
$$\begin{array}{l} \rho = \Delta P \div (g \times h) \rightarrow 32,500 \div (10 \times 2.5) = 1,300 \, \text{kg/m}^3 \\ \text{(Density of the magical pond} = 1,300 \, \text{kg/m}^3) \end{array}$$

3. A treasure chest lies 10 m below the surface of freshwater (ρ = 1,000 kg/m³). The chest's bottom has an area of 1.2 m². Calculate the force exerted by the water on the bottom. (g = 10 m/s²)

4. A liquid column in a flask is 0.8 m high. The pressure difference between top and bottom is 9,600 Pa. Calculate the density of the liquid. $(g = 10 \text{ m/s}^2)$

```
h = 0.8 \text{ m}
P = ?
g = 10 \text{ m/s}^2
P = 9,600 \text{ Pa}
P = 9,600 \text{ Pa}
\rho = \Delta P \div (g \times h) \rightarrow 9,600 \div (10 \times 0.8) = 1,200 \text{ kg/m}^3
\rho = 4,200 \text{ kg/m}^3
```

5. A submarine experiences a pressure difference of 340,000 Pa in seawater (density $1,020 \text{ kg/m}^3$). Calculate the depth of the submarine. (g = 10 m/s^2)


```
P = 340,000 \ Pa

p = 1,020 \ kg/m^3 h = \Delta P \div (p \times g) \rightarrow 340,000 \div (1,020 \times 10) \approx 33.3 \ m

g = 10 \ m/s^2 (Depth of the submarine \approx 33.3 \ m)

h = ?
```

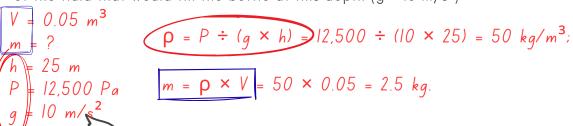
6. A giant turtle stands 6 m below the surface of a lake ($\rho = 1,030 \text{ kg/m}^3$). Its shell presses on a platform of area 1.5 m^2 . Calculate the force on the platform. (g = 10 m^2)

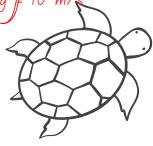
7. A crystal tower is submerged in a liquid with density 1,150 kg/m³. If the pressure difference between top and bottom is 46,000 Pa, calculate the height of the tower. (g $= 10 \text{ m/s}^2$

$$\rho = 1,150 \text{ kg/m}^3 \qquad h = \Delta P \div (\rho \times g) \rightarrow 46,000 \div (1,150 \times 10) = 4 \text{ m}$$

$$P = 46,000 \text{ Pa} \qquad (\text{Height of the crystal tower} = 4 \text{ m})$$

$$g = 10 \text{ m/s}^2$$


$$h = ?$$


8. A potion flask contains a liquid 1.5 m deep with density 1,200 kg/m³. If the base area is 0.2 m^2 , calculate the force the liquid exerts on the base. (g = 10 m/s^2)

9. A diver measures a pressure difference of 50,000 Pa at a certain depth in seawater $(\rho = 1,025 \text{ kg/m}^3)$. Calculate how deep the diver is. $(g = 10 \text{ m/s}^2)$

$$P = 50,000 \ Pa$$

 $\rho = 1,025 \ kg/m^3$ $h = \Delta P \div (\rho \times g) \rightarrow 50,000 \div (1,025 \times 10) \approx 4.88 \ m$
 $h = 2$ $h = 2$ $h = 4.88 \ m$

10. A magical well contains a shimmering fluid. A crystal bottle with a volume of 0.05 m³ is lowered to a depth of 25 m, where the fluid pressure is 12,500 Pa . Find the mass of the fluid that would fill the bottle at this depth ($g = 10 \text{ m/s}^2$)

