




Work done calculations:

Work done (J) = Force (N) x Distance (m)

Worked example: What is the work done if:

(a) Force = 3N, distance = 6m

STEP 1: Write the equation:

$$\text{Work done (J)} = \text{Force (N)} \times \text{Distance (m)}$$

STEP 2: Calculate:

$$= \boxed{3\text{N}} \times \boxed{6\text{m}}$$

$$\text{Work done (J)} = \boxed{18\text{J}}$$

1. What is the work done if:

(a) Force = 10N, distance = 10m

STEP 1: Write the equation:

$$\text{Work done (J)} = \text{Force (N)} \times \text{Distance (m)}$$

STEP 2: Calculate:

$$= \boxed{\quad} \times \boxed{\quad}$$

$$\text{Work done (J)} = \boxed{\quad}$$

(c) Force = 750N, distance = 46m

STEP 1: Write the equation:

$$\text{Work done (J)} = \text{Force (N)} \times \text{Distance (m)}$$

STEP 2: Calculate:

$$= \boxed{\quad} \times \boxed{\quad}$$

$$\text{Work done (J)} = \boxed{\quad}$$

2. What is the force if:

(a) Work done = 1000J, distance = 2m

STEP 1: Write the equation:

$$\boxed{\quad} = \boxed{\quad} \div \boxed{\quad}$$

STEP 2: Calculate:

$$= \boxed{\quad} \div \boxed{\quad}$$

$$\text{Force (N)} = \boxed{\quad}$$

(c) Work done = 3600J, distance = 40m

STEP 1: Write the equation:

$$\boxed{\quad} = \boxed{\quad} \div \boxed{\quad}$$

STEP 2: Calculate:

$$= \boxed{\quad} \div \boxed{\quad}$$

$$\text{Force (N)} = \boxed{\quad}$$

(b) Force = 20N, distance = 5m

STEP 1: Write the equation:

$$\text{Work done (J)} = \text{Force (N)} \times \text{Distance (m)}$$

STEP 2: Calculate:

$$= \boxed{20\text{N}} \times \boxed{5\text{m}}$$

$$\text{Work done (J)} = \boxed{100\text{J}}$$

(b) Force = 50N, distance = 5m

STEP 1: Write the equation:

$$\text{Work done (J)} = \text{Force (N)} \times \text{Distance (m)}$$

STEP 2: Calculate:

$$= \boxed{\quad} \times \boxed{\quad}$$

$$\text{Work done (J)} = \boxed{\quad}$$

(d) Force = 267N, distance = 49m

STEP 1: Write the equation:

$$\text{Work done (J)} = \text{Force (N)} \times \text{Distance (m)}$$

STEP 2: Calculate:

$$= \boxed{\quad} \times \boxed{\quad}$$

$$\text{Work done (J)} = \boxed{\quad}$$

(b) Work done = 70J, distance = 5m

STEP 1: Write the equation:

$$\boxed{\quad} = \boxed{\quad} \div \boxed{\quad}$$

STEP 2: Calculate:

$$= \boxed{\quad} \div \boxed{\quad}$$

$$\text{Force (N)} = \boxed{\quad}$$

(d) Work done = 4539J, distance = 51m

STEP 1: Write the equation:

$$\boxed{\quad} = \boxed{\quad} \div \boxed{\quad}$$

STEP 2: Calculate:

$$= \boxed{\quad} \div \boxed{\quad}$$

$$\text{Force (N)} = \boxed{\quad}$$

3. What is the distance if:

(a) Force = 100N, Work done = 2300J

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Distance (m) =

(c) Force = 10N, Work done = 5800J

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Distance (m) =

(b) Force = 20N, Work done = 4680J

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Distance (m) =

(d) Force = 79N, Work done = 5056J

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Distance (m) =

Stretch and challenge: Calculate:

Work done if:

(a) Force = 10N, distance = 10cm

STEP 1: Write the equation:

$$= \quad \quad \quad \times \quad \quad \quad$$

STEP 2: Conversions:

cm to m =

STEP 2: Calculate:

$$= \quad \quad \quad \times \quad \quad \quad$$

Work done (J) =

(a) Force = 25N, distance = 11mm

STEP 1: Write the equation:

$$= \quad \quad \quad \times \quad \quad \quad$$

STEP 2: Conversions:

mm to m =

STEP 2: Calculate:

$$= \quad \quad \quad \times \quad \quad \quad$$

Work done (J) =

Force if:

(c) Work done = 10KJ, distance = 2m

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Conversions:

KJ to J =

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Force (N) =

(d) Work done = 15KJ, distance = 36cm

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Conversions:

KJ to J =

cm to m =

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Force (N) =

Distance if:

(e) Force = 100mN, Work = 23J

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Conversions:

mN to N =

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Distance (m) =

(f) Force = 23N, Work = 23KJ

STEP 1: Write the equation:

$$= \quad \quad \quad \div \quad \quad \quad$$

STEP 2: Conversions:

KJ to J =

STEP 2: Calculate:

$$= \quad \quad \quad \div \quad \quad \quad$$

Distance (m) =

HINT: Remember the units , do any of these units need converting?