| C4 Chemical calculations | | | Length of topic: 4 F combined / 7 H combined / 11 Separates | | Chemical calculations | | |--|--|--------------------|--|---|---|--| | | | Moles, atomic ma | ass, formula mass, conservation
ncentration, limiting reactant, | KS3 links: Matter 2 - atoms, elements and compounds. Chemical formula. Reactions 1 - acids, alkalis and neutralistion. Matter 2 - Balancing equations and conservation of mass. | Misconceptions: | | | | | | Le | ssons | | | | 1. Conservation of mass | Recap atoms and elements in a formula Define conservation of mass Explain why some reactions appear to lose or gain mass Balance symbol equations | | | 7. Limiting reactants (H) | Define the terms excess and limiting reactants Be able to determine the limiting reactant if given masses Use the limiting reactant to determine the theoretical yield | | | 2. Conservation of mass practical | Safely carry out the oxidation of magnesium practical Explain observed changes in mass and link to the particle model Explain why actual mass is different to the theoretical mass Calculate uncertainty from given results Use masses from a reaction to determine a compound formula (empirical formula) (H) | | | 8. Concentration of solutions | Define concentration Explain how mass of solute and volume of solvent affects concentration (H) Calculate concentration in g/dm3 Calculate concentration in mol/dm3 (SS) | | | 3. RFM and the mole | Identify the relative atomic mass (Ar) Calculate the relative formula mass (Mr) Calculate the percentage mass of an element Define a mole and use to calculate masses (H) | | | 9. Titration calculations (SS) | Recap neutralisation Describe the use of titration (demo) Calculate concentration of an unknown solution using a known concentration | | | 4. Reacting masses (HT) (theoretical mass) | Recall that a balanced equation represents the ratio of moles reacting Calculate masses of reactants and products from a balanced symbol equation Balance an equation from given masses of reactants and products | | | 10. Atom economy (SS) | Define atom economy Calculate atom economy Explain why a high atom economy is important Compare atom economy data for reactions to justify a reaction pathway | | | 5. Percentage yield (SS) | Calculate the percentage yield if given actual and theoretical mass Calculate the theoretical mass (last lesson) if given mass of reactant and use to calculate a percentage yield Give reasons why a reaction may give less than the theoretical yield. | | | 11. Gas volume (HT) (SS) | Know that one mole of any gas will occupy 24dm3 Calculate the volume of a gas at room temperature Calculate volumes of gases from a balanced equation. | | | 6. Moles to a balanced equation (H) | Be able to one masses | calculate moles of | reactants from given
les to balance an equation | Activities: L2 – Magnesium oxide conservation of mass practical L3 – Demo moles of compounds L8 – Demo concentration L9 – Demo titration | | |